Optimization opportunities based on the polyhedral model in
GRAPHITE

How much impact has GRAPHITE already?

Tobias Grosser
University of Passau
grosser@fim.uni-passau.de

Abstract

The polytope model is used since many years to describe
standard loop optimizations like blocking, interchange
or fusion, but also advanced memory access optimiza-
tions and automatic parallelization. Its exact mathemat-
ical description of memory accesses and loop iterations
allows to concentrate on the optimization problem and
to take advantage of professional problem solving tools
developed for operational research.

Up to today the polytope model was limited to research
compilers or source to source transformations. Graphite
generates a polytope description of all programs com-
piled by the gcc. Therefore polytope optimization tech-
niques are not limited anymore to hand selected code
pieces, but can actually be applied in large scale on real
world programs. By showing the impact of GRAPHITE
on important benchmarks - “How much runtime is actu-
ally spent in code, that can be optimized by polytope op-
timization techniques?" - we invite people to base their
current polytope research on GRAPHITE to make these
optimizations available to the large set of gcc compiled
applications.

1 Motivation

The polytope model describes memory access optimiza-
tions based on an abstract mathematical representation.
It can be used to describe traditional loop optimizations
like blocking, tiling, or splitting in an exact way and to
schedule them in arbitrary order. However there are also
advanced auto parallelization' passes and new optimiza-
tions based on powerful operational research tools, that
cannot be expressed easily with traditional loop trans-
formations, possible.

"http://www.fmi.uni-passau.de/cl/loopo/

As the polytope model was always limited to source to
source translation tools or hand selected code pieces, it
was never used on regular base to optimize programs
written in imperative languages. Therefore the big por-
tion of C, C++ and Fortran programs was never ac-
cessible to optimizations based on the polytope model.
GRAPHITE? is the first open source implementation of
the polytope model for a low level imperative compiler.
GCC 4.4 already includes a first implementation of
GRAPHITE, which is still limited in several aspects. It
is tightly connected to gcc and the polytope description
is not yet complete. During the last six months the cur-
rent graphite branch was reworked and a complete poly-
tope description was introduced. The last but very im-
portant thing missing is a set of advanced optimizations
based on GRAPHITE and the polytope model. Here we
can take advantage of the research taking part in this
area since a long time.

Before starting to write/port new optimizations it is time
to take a step back and see what can be optimized by
GRAPHITE and if it is actually worth to write optimiza-
tions for.

How much code can be translated into the polytope
model? How many conditions, statements, and loops
of the original program are covered by the polytope de-
scription? How much runtime is actually spent in code
that can be described and therefore optimized? And fi-
nally: If some code is not handled at the moment, is
this just not yet implemented in GRAPHITE, is it a lim-
itation because of missing optimizations in GCC or a
limitation of the polytope model?

To find an answer, valid for a large set of programs, the
SPEC 2006 benchmark suite is used to analyze the im-
pact of GRAPHITE on “real world" programs.

2http://gcc.gnu.org/wiki/Graphite

http://www.fmi.uni-passau.de/cl/loopo/
http://gcc.gnu.org/wiki/Graphite

i = idea Analysis Optimizations
p = planned —Dependency analysis (w) — Traditional loop transformations (p)
d = in development _ Autopar support (d)
w = working B leli LooP
£ = finished — Expose more parallelism — LooPo (p)

— Iterative optimizations (i)

— Advanced polytope optimizations (i) ~ Vectorization (i)

— Autopar (d)
GIMPLE Front End |—— % GPOLY Back End » GIMPLE
(w) (w)
GRAPHITE

Figure 1: Status of GRAPHITE development - May 2009

2 Status of GRAPHITE development

GRAPHITE is developed since several years. The first
analysis, the scalar evolution pass, on which it is heav-
ily based was committed five years ago. Last year the
first public visible code was committed to gcc 4.4, re-
leased in spring 2009. However until today the impres-
sive gains are still missing. So what is the development
status? What is still coming and what does already ex-
its?

To start there are two different versions of GRAPHITE.
The version as in gcc 4.4 allows a simple transfor-
mation - loop blocking - to give a first impression of
GRAPHITE and to test integration of CLooG and PPL.
However GRAPHITE 4.4 is still very limited. Loop
blocking does not have any heuristics at all and is
based on a non polytope dependency analyzes from the
lambda framework. This limits the effects and prevents
big performance improvements.

The second version is in GRAPHITE branch and al-
ready took the next step. During the last 6 month the
polytope description was completed, so that all future
optimizations can take advantage of it and are not lim-
ited by any leftover code. Also all non polytope code
was removed. This means in GRAPHITE branch there
are currently no optimizations at all. However it is ready
to base optimizations on it.

This paper will describe the situation in GRAPHITE
branch, as this is the first full polytope model in gcc.

In branch front end and back end, converting from GIM-

PLE to the GRAPHITE polytope description (GPOLY)
and back from GPOLY to GIMPLE, work. This means
we can extract the polytope description for interesting
code regions and generate completely new loop nests
from this description. This was tested by enabling
the identity transformation “GIMPLE — GPOLY —
GIMPLE" in gcc bootstrap and by testing large projects
as the SPEC 2006 benchmark suite. Fortunately the
missing part is the most interesting. Adding optimiza-
tions that work on the polytope representation.

There are two student projects about optimizations in
GRAPHITE during Google Summer of Code"" 2009.
The first one works on the already existing tree-autopar
code for automatic loop parallelization with OpenMP.
This code will be extended to handle all code graphite
can optimize.

The other project aims to implement traditional loop
transformations in GRAPHITE. Even if we already have
loop-blocking in GCC 4.4, to actually take advantage
of the polytope model and to get real performance im-
provements we need loop transformations that work
completely on the polytope model and that are are ac-
companied by well tuned heuristics.

The last missing part blocking both projects, the poly-
hedral data dependency analysis, was recently finished.
Beside these two projects there are several other open
projects, whereas most of them can take advantage of
research already done. The LooPo [5] project has a large
set of tools to discover more parallelism, there is re-
search on iterative compilation or the internal vectorizer

might want to take advantage of the exact dependency
analysis. It is also possible to write new optimizations
that use characteristics of the polytope model to opti-
mize cost functions like the distance between memory
access using the linear programming solver in PPL.
Another orthogonal project in GRAPHITE is PCP?. It
was started half a year ago and will move GRAPHITE in
a simple to handle package that includes a clean text and
library interface for improved debugging and testing fa-
cilities. This should make development of GRAPHITE
optimization passes even easier. For further information
about the design of GRAPHITE and PCP is in the paper
[7] available.

3 The polytope model

The polytope model is the model on which future
GRAPHITE based optimizations will work. As there
exists already a long research history there are several
papers that talk about the polytope model [6], however
most of them base the description on an source to source
compiler.

In the context of modern compiler development this pa-
per tries to offer a different introduction to the polytope
model.

3.1 SSA on arrays - The polytope model?

Most modern optimizing compilers use an intermediate
language based on static single assignment (SSA[4]) in
their analysis and optimization passes. GIMPLE, the in-
termediate language used in GCC, is also based on SSA.
The main reason for the use of SSA are the explicit use-
def chains. Using SSA the lookup of the defining state-
ment for a given use is in O(1). Furthermore for every
use there is only one defining statement, therefore algo-
rithms on SSA are often a lot simpler than on non SSA
code.

Unfortunately SSA is only well defined on scalar vari-
ables (scalar SSA), whereas it is difficult to define a prat-
ical version of SSA on non scalar variables like arrays
or memory references (array SSA). Even though GCC
defines some kind of array SSA using “VUSE" state-
ments, the implementation is limited compared to scalar
SSA. In scalar SSA for every use of a scalar its current
value depends on exactly one defining statement, as ev-
ery write defines a scalar completely. In the array SSA

3http://gcc.gnu.org/wiki/PCP

implementation of gcc the content of an array can be
defined by several statements, as a write does not define
the complete array but can define single array cells. So
the array may contain cells defined by different state-
ments. Therefore there is a set of defining statements,
not just one defining statement.

Making array SSA in the general case as useful as scalar
SSA is a difficult problem, maybe impossible. However
it is possible to represent a subset of programs using the
polytope model, which can be seen as some kind of ar-
ray SSA that extends the current “VUSE" statements.

3.1.1 Arrays as sets of scalar values

Even if it is difficult to define SSA on arrays, it is pos-
sible to extend scalar SSA. As arrays are defined as sets
of scalar values, instead of tracking accesses to the com-
plete array, accesses to every single array cell can be
tracked. And for scalar values, SSA is already defined
and useful. Unfortunately in the general case the ar-
ray cells a statement accesses are not known at compile
time, as the array subscript can be calculated by a func-
tion - in the worst case by a call to rand () . So tracking
them is not always possible.

Nevertheless there is a subset of array accesses that can
be tracked exactly. All array accesses with compile time
constant subscripts like A[5][8] or B[3][2]. In this subset
memory accesses to scalars and arrays can be defined in
the same way. A memory access is the access to a scalar
cell in the memory M of the program, a vector space in
7", whereas the first dimension defines the base element
and further dimension define possible array subscripts.
Scalar values like ¢ are handled as arrays of dimension
zero. To sort variables in this model we define a function
f that assigns every scalar name and every array base an
unique number i € Z.

Now a memory access is not defined by its name, but as
access to a cell c € M. With f defined as {A — 0,B —

l,c — 2}, A[5][8] is the access to (0,5,8), B[3][2] is the
access to (1,3,2), and c is (2, 0, 0) as in 3.

By accessing array cells with this notation they are han-
dled like normal scalars. So every use has exactly one
defining statement, as every write defines a cell com-
pletely. However this is just the first part of SSA. Find-
ing the defining statement is still a problem, as accesses
to array cells are not yet in SSA. There may be several
statements that write into (0,5,8).

http://gcc.gnu.org/wiki/PCP

A [5][8] = 10; (0,5,8) = 10; //81
A [5][8] = c; (0,5,8) = (0,(2,0,0)); //82
for (i = 0; 1 < 100; i++) { for (i = 0; 1 < 100; i++) {
B[3][2] = A[5]18] (1,3,2) = (2,(0,5,8)); //83.1
for (j = 0; j < 50; j++) for (j = 0; j < 50; j++)
A[3][4] = B[3][2] (0,3,4) = (3.1,(1,3,2)); //83.2.1
B[5][8] = A[3][4] (1,5,8) = (3.2.1,(0,3,4)); //83.3
} }
Figure 2: Non SSA code Figure 4: Constant array SSA using the statement sched-
ule
(0,5,8) = 10;
(0,5,8) = (2,0,0); mal SSA, but instead of a single assignment for ev-
for (i = 0: i < 100 i++) | eryhnzmle there is a ?lingle assignment for every tuple
(1.3.2) = (0.5.8); (schedule,memorycell).
for (j = 0; j < 50; j++)
(0,3,4) = (1.,3,2): 3.3 Extending array SSA for loops
(1,5,8) = (0,3,4);
} The subset we used to define SSA on arrays is still very

Figure 3: Constant array accesses based on memory
cells

3.2 Using a schedule to specify the defining state-
ment

To identify a certain definition, the memory cell it ac-
cesses is not enough. Scalar SSA solves this by allow-
ing only one definiton of every scalar variable. Further
writes into the same variable are forbidden. By adding
this restriction the name of a scalar variable is enough to
identify the defining statement.

However for the scalar notation that was introduced on
arrays a different approach is taken. Statements are ref-
erenced using a schedule. Every statement gets assigned
an vector depending on its textual position in the pro-
gram. The first statement is S:1, the second statement is
S:2, For every loop level an additional dimension
is added that is incremented instead of the outer dimen-
sions. If a new loop is for example started at position
3 the first statement in this loop has the schedule S:3.1.
To specify the last definition of a use a tuple of schedule
and memory cell is used. For example to reference the
definiton of memory cell (0,5,8) that took place in S:2,
the tuple (2, (0,5,8)) is used as seen in 4.

Now every use can reference the single definition it
is based on. This references can be used like nor-

limited and is not able to represent a lot of real world
code. Especially in loops it is uncommon to find con-
stant array subscripts, as loops are often used to rework
the content of a complete array. Fortunately it is possi-
ble to extend the defined array SSA.

To be able to represent arrays as set of scalars it was
necessary to specify for every array access the accessed
cell. This is easy for constant subscripts, but in general it
is possible for all access functions that can be expressed
and analyzed at compile time. Therefore array accesses
like A[(i * M)?] can be analyzed, as long as there is a
way to store and analyze the function (i * M)? reason-
able fast.

Unfortunately analyzing arbitrary functions is complex.
However there is a subset of functions that can be ana-
lyzed with limited complexity. The set of functions, that
are affine in virtual loop iterators (VLI) and parameters
(P). Parameters are defined as scalar integer variables,
that are constant during the execution of a code region
expressed using polyhedral array SSA. Virtual loop it-
erators count the number of loop iterations. Therefore
valid array accesses are all accesses, where the sub-
scripts accessed are defined by an affine function like
5i4+8j+k+12as withi, j € VLI and k € P as shown in
5.

However by using this extension specifying the defin-
ing statement for an use is more complex. Scalar SSA
and constant array SSA have the property, that in ev-
ery loop the defining statement iteration for a memory

cell is always the previous iteration, as in every iteration
the same memory cell is overwritten. If affine access
functions are used, a statement can write in a different
array cell on every loop iteration. Therefore a definition
can only be referenced by the combination of the static
schedule referencing a statement and a dynamic sched-
ule specifying the loop iteration. In 5 e.g. the last defi-
nition of memory cell (1,25+k) was in statement S3.1 at
iteration (i=5).

Therefore use-def chains are defined in between single
statement iterations, instead of statements. As the num-
ber of statement iterations is prohibitive high, it is im-
possible to save all use-def relations for every single it-
eration. However it is possible to calulate these use-def
chains as long as the expressions in loop boundaries and
conditions are affine functions in VLI and P. The usage
of polytope libraries enables us to express the detailed
use-def information in a highly compressed form. For
S4.1 the affine function j = 5i+ k is used to identify the
defs for every iteration of loop j. For iteration j =54k
the corresponding def is for example i = 1.

3.3.1 Why generate a new model and not extend
GIMPLE?

It was shown that it is possible to extend SSA to arrays,
so why is GRAPHITE not implemented as GIMPLE ex-
tension? One reason is that polytope array SSA dupli-
cates a lot of information available in GIMPLE. Access
functions, loop boundaries and conditional expressions
are saved in the polytopes. Therefore all scalar code,
except some reductions, is duplicated. Any transforma-
tion on the polytopes or the gimple code would require
an expensive update of the other data structure.

Also the polytope model is not expressive enough to be
used for all GIMPLE memory accesses, so there would
be two data structures to represent memory accesses.
This complicates writing general algorithms.

However the most important point is, that the polytope
model is not imperative any more. Or at least it does
not have to be imperative. A complete dependency de-
scription of the different statements and their iterations
is enough to calculate the result of a SCoP. There is no
need for control flow any more. So working on control
flow based data structures like GIMPLE is too low level.

void foo (int k)

A [5] = 10;
A [k] = c;
for (i = 0; i < 100; i++)

B[5i+k] : AlS5]

for (j = 0; j < 100; j++)
= B[j]

void foo (int k)

(0,5) = 10; /7 S:1

(0.k) = (0,(2,0)); // §:2

for (i = 0; i < 100; i++4){
(1,5i+k) = (2,(0,5); // S:3.1

for (j = 0; j < 100; j++)

= (3.1 (j=5i+k),j)); // S:4.1

Figure 5: Affine array SSA

3.3.2 How to optimize polytope array SSA

There are two different ways to optimize in the polytope
model. This first one is to change the order in which
statements and loop iterations are executed. Most
traditional loop optimizations try to optimize the use of
the CPU cache, by either creating more cache locality
using e.g. loop blocking or loop fusion or by reducing
the memory footprint using loop splitting. All these
transformations can be expressed by changing the
execution order. However there are other use case to
change the execution oder. The two most interesting
ones are transformations enabling parallel execution or
vectorization.

Another ortogonal approach is optimizing the data
layout. It is possible to reorder arrays to improve
cache locality or to privatize data to allow further
optimizations. It might even be possible to reduce the
memory footprint by removing unused array regions or
by removing temporary results.

3.4 Code GRAPHITE can represent

GRAPHITE calls a part of a program that can be rep-
resented in the polytope model a static control part

/x Start SCoP. */

start:
Ali] = 1;
1++;
if (i <= 100)
goto start;

/x End SCoP. */

Figure 6: Valid SCoP with goto-loop

(SCoP). SCoPs are detected on the gcc intermediate rep-
resentation GIMPLE, therefore all properties that qual-
ify a code region as SCoP are independent of a specific
language representation. Hence GRAPHITE is able to
optimize programs written in any of the gcc front end
languages (C, C++, Fortran, Ada, Java).

A SCoPs is a single entry single exit region containing
an arbitrary set of loop nests, straight line code and/or
conditions, whereas the control flow has to be struc-
tured. However it is possible that the code in a SCoP
is written using explicit for loops or implicit while,
do..while or even goto loops. Loops that contain
multiple exits are not supported.

Scalar variables that do not changed inside a SCoP are
called parameters. Together with the loop induction
variables the parameters span a vector space that is used
to define affine expressions, whereas loops with multi-
ple induction variables are supported.

In a SCoP only loops are allowed that have constant
strides and which bounds can be expressed by affine
expressions. Therefore unlimited infinite loops are not
allowed. Conditions are limited to comparisons (<,
<=, >, >=, ==, !=) between two affine expres-
sions. However the same generality applies as for the
control flow. Affine expressions do not have to be writ-
ten explicitly in the source code, but it is sufficient that
the expressions used can be analyzed to an affine expres-
sions.

4

GRAPHITE handles all side effect free calculations in a
SCoP. Thus even function calls are allowed if they are
pure or const.

To be able to analyze dependencies efficiently data ref-
erences to arrays are only allowed, if the subscripts are
affine expressions, whereas graphite depends a lot on

void foo (int M,
int i;

int N) {

/x Start SCoP. %/

for (i = 0; i <=M, i+=2)
a =10 x 1 + 12 + M;
b=5%1+ a;

if (5 x 1 + 10 «xM != a)
A[b] = 20;

else

A[b] = b;

/*x End SCoP. */

Figure 7: Valid affine expressions in SCoP

working alias analysis to be able to detect independent
pointer sets. A SCoP can also contain scalar reductions
as payload, they are handled like all data references.
Structures can not be part of a SCoP.

SCoPs that meet these properties can be represented by
the polytope model and can be optimized using generic
polytope optimizations.

4 The polytope description in GRAPHITE

GRAPHITE implements a plain and simple interface*
to optimize memory accesses based on the polytope
model. As this model has been used for many years
there exists already a well established description heav-
ily influenced by CLooG[2], an open source polytope
code generator.

The interface in GRAPHITE is close to the established
descriptions used in polytope research, but contains
some small differences and adjustments. Therefore it
should be easy to port and try existing optimizations.
As GRAPHITE’s polytope interface establishes a strict
boundary to the GCC internal state. Analysis and opti-
mization passes read, analyze and optimize an abstract
mathematical problem description.

The small and independent interface allows people that
are not yet part of the gcc community to try their poly-
tope optimizations, without being forced to get used to
gcc internals. A small header file with three data struc-
tures is enough to port a polytope optimization to the

4Source in “gec/graphite-poly.h”

void foo (int N,
int i, j, r;
int A[100];

int M) {

// Start SCoP
A[N+1] = 0; // bbO

for (i = 0;

;1 <= N+10; i++) {
A [i+N] = A [1i

1; // bbl

for (j = i;
if (j >N)
r = A [i—N] + r;

j <= itM; j++)

// bb2

}
// End SCoP

Figure 8: Example SCoP

GCC.
And if polytope optimizations once prove to be useful in
compiler development, the simple interface is portable
to a large set of open source compilers, so that a produc-
tive exchange and comparison of optimizations can take
place.

4.1 The polytope library in GRAPHITE

To describe polytopes the Parma Polyhedra Library
(PPL [1]) is used. It is the leading open source polytope
library. For the import of GRAPHITE into gcc 4.4
PPL’s platform support was tested on and extended to
all important gcc platforms.

All polytopes in GRAPHITE wuse the type

ppl_Pointset_Powerset_ NNC_Polyhedron_t.

This type describes a union of non necessary closed
convex polyhedra in the vector space R”. This is wrong
as loop iterations and array accesses are elements of Z,
but works for the current uses. However to write more
sophisticated optimizations, that require counting the
points in the polyhedra, polyhedra in the vector space
7" are required. So a switch to Z-polyhedra will be
necessary.

4.2 SCoP

A SCoP is a program region described in the polytope
model. Therefore it only contains information concern-

ing the polytope model. Additional information describ-
ing the actual calculations is hidden. All optimizations
and analysis take a SCoP, work on it, and return an op-
timized or analyzed version of it.

The SCoP S = (p,bbs) is defined by the number of ex-
ternal parameters p and a set of black boxes bbs.

A parameter is an integer variable that is unknow during
compile time, but constant during SCoP execution. In
the example M and N are parameters, as they are used
in the SCoP, but not modified. i and r are no parameters
as i is an induction variable and r is modified inside the
SCoP. For this example p = 2.

4.3 Black Box

A black box describes a calculation that will be executed
in the SCoP. As the name black box suggests the de-
tails of the calculation are hidden. In our example every
statement is a black box on its own. Therefore a black
box can contain a larger set of statements, some hidden
control flow, or function calls. The only part exposed
are the data references a black box contains.

The black box B = (domain,drs,scattering) is defined
by the iteration domain domain, a set of data references
drs and the scattering polytope scattering.

Every black box might be executed several times,
whereas the loop induction variables are different for ev-
ery iteration. A specific iteration of a black box is there-
fore referenced by the values of the loop induction vari-
ables for this iteration, whereas the possible values for
the induction variables are the points in domain. domain
contains one dimension for every parameter of the SCoP
and a special dimension representing constant offsets. In
addition it contains one dimension for every loop itera-
tor. E.g. bbl has one loop dimension representing i,
whereas bb2 has two dimensions for i and j and b0 has
no loop dimension at all. The domain for bb looks like
this 4.3

In contrast to other polytope optimizations packages the
domain does not define the order in which different it-
erations are executed. Therefore it is not necessary for
any optimization to change the domain.

The order in which the different iterations of a black
box are executed is defined in the scattering polyhe-
dron. This polyhedron contains the same dimensions
as domain, but is extended by several new dimensions
(t1,t2,...,t,) called scattering dimensions. The scatter-
ing polytope now maps every point of the domain to a
point defined by the new scattering dimensions. For ex-

—.

N+M+10

\J

N+10

Figure 9: Domain for black box bb2

ample for bb1 the scattering function may define a map-
ping {t; =0, = i,3 = 0} and for bb2 we may define a
mapping {t; = 2,t, = i,t3 = j}. To get the global exe-
cution order of the iterations of all black boxes the scat-
tering dimensions are ordered lexicographically and the
corresponding black box iterations are executed in this
order. Therefore all iterations of bb1 will be executed
before bb2 as t; < t, for all iterations. The individual
loop iterations are executed in the original order, as for
iteration i = 4 and i’ = 5 there is t, < 1.

Additional information about scattering functions can
be found in the cloog documentation . However in
contrast to cloog the scattering functions in GPOLY are
fully defined unions of non necessarily closed convex
polyhedron. This allows to map subsets of the domain
with different scattering functions.

4.4 Data references

A data reference DR = (accesses,type), is defined by
the accessed space accesses and the type of its access
type. The type of data reference can either be read, write
or may-write. Read means a data reference reads or may
read any of the values marked in accesses. Write means
a data reference must overwrite all the values marked in
accesses. May-write means that the values marked in
accesses can be but do not need to be overwritten.

Shttp ://www.bastoul.net/cloog/manual .php#
SEC8

Data references in GPOLY use an unified data model
to describe the accessed memory. In classical GIMPLE
there exist scalar values and arrays, whereas arrays are
defined as a matrix of scalar cells. GPOLY on the other
hand talks about a multi dimensional space M C Z" of
scalar values.

An access of an array cell A[s;] is mapped to the point
(dy =b,dy = s51,d3 = 0,...), whereas the value b is de-
fined by the alias set the array is pointing to. Every alias
set is mapped to an unique value. If the array is part of
more than one alias set every array cell is mapped to one
point for every alias set the array is part of. The points
only differ in the first dimension. Scalar values are han-
dled like arrays of dimension O.

In our example the read access of bb2 is defined as an
access to (2,0) for the scalar access r, and (1,i —N) for
the array access A[i — N|. This can represented like in
4.4 as union of two polyhedra each containing one ele-
ment.

At the moment data references are read only for opti-
mizations, therefore the optimization of the data layout
is not yet possible.

5 Coverage of GRAPHITE

After having seen which regions GRAPHITE can opti-
mize it is time to ask how many SCoPs can be found in
“real world” software. Is there a significant impact of
GRAPHITE on code coverage or are there still restric-
tions left that limit coverage. In this analysis the SPEC

http://www.bastoul.net/cloog/manual.php#SEC8
http://www.bastoul.net/cloog/manual.php#SEC8

d1 / [first subscript]

0 4‘—>

0 1

2

d0 / [Alias set]

Figure 10: Access space for read data referance of bb2

CPU 2006° 7 benchmark suite was used to provide an
accepted set of test programs. Nevertheless the reader is
asked to try GRAPHITE on its own programs.

5.1 How was the code coverage analyzed?
5.1.1 Compile time coverage

The coverage analysis in this paper is based on the idea
of the “gcov” tool. The number of interesting items in
the complete program is counted and compared to the
number of touched parts of the program. However in
contrast to “gcov” the analyzis does not work on source
code files, but on the gcc internal GIMPLE representa-
tion.

As the analyzis is based on GIMPLE, not the lines of
code are counted, but loops, conditions and statements
in the GIMPLE control flow tree of the program. This
simplifies comparing different fronted languages. Also
the GIMPLE language is closer to the GRAPHITE opti-
mizations, so a coverage analysis on it seems to be more
related to the “real world” impact as an analysis based
on source code.

Every item (loop, condition, statement) is interesting as
soon as it can be detected as a part of a SCoP during
GRAPHITEs SCoP detection, because future optimiza-
tions in GRAPHITE will be able to optimize it.

5.1.2 Hot spot coverage

As normally programs spend a lot of time in small parts
of their code base, to foresee the performance impact

Shttp://www.spec.org/cpu2006/
7 Except 447.dealll’, *465.tonto’, *482.sphinx3’, *433.milc’ as
they had still miscompiles in GRAPHITE.

of GRAPHITE a measurement that can model these
hotspots is needed.

The model that is used is an extension to the GIMPLE
based compile time coverage. It takes advantage
of gccs feedback analysis “~fprofile-—arcs
—-ftest-coverage —-fprofile-use". All
benchmarks are run once with profiling instrumentation
to get the execution count of every basic block. With
the help of “~fprofile—use" this execution count
is available for every basic block in gcc and was
used to scale the loop, condition and statement counts
depending on the number of times they where executed
in the profiled test run.

These scaled counts will not give an approximation
of the run time spent in a part of a program, as unop-
timized hotspots can slow down program execution
a lot. Nevertheless they give a better impression of
the hot spot coverage and as they are independent of
the processor arquitecture they can be used during
GRAPHITE development to track progress in code
coverage.

To get a accurate performance analysis for a specific
test case on a specific hardware the usage of low impact
performance measurement technics like PAPI might be
usefule. However the SCoPs graphite detects are often
very small so even little side effects might influence the
measurement significantly.

5.2 Coverage of GRAPHITE branch - May 2009

At the moment (May 2009) GRAPHITE branch can
handle most of the basic loop nests it was ment to
handle, however it was never optimized for code cover-
age. Nevertheless it is important to get a start point to
be able to see future improvements in code coverage.

http://www.spec.org/cpu2006/

Static Hotspot
Benchmark loops conds stmts | loops conds stmts
459: GemsFDTD 2.24 0.71 0.57 0.28 0.27 0.07
473: astar 3.31 0.79 0.47 0.00 0.00 0.00
410: bwaves 3.45 1.35 1.46 0.19 0.16 0.09
401: bzip2 3.37 1.20 0.90 0.53 0.18 0.23
436: cactusADM 2.50 0.96 354 | 81.83 68.83 99.41
454: calculix 10.68 4.10 528 | 61.79 55.66 76.09
403: gcc 2.87 0.40 0.48 0.51 0.25 0.48
445: gobmk 2.54 0.41 0.51 0.30 0.08 0.08
435: gromacs 9.08 3.49 2.77 7.75 2.94 2.20
464: h264ref 6.24 2.05 221 | 2042 12.58 7.96
456: hmmer 0.79 0.26 0.22 0.00 0.00 0.00
470: Ibm 19.23 7.35 35.79 0.07 0.02 0.02
437: leslie3d 5.76 2.49 1.23 4.36 4.34 0.72
429: mcf 1.54 0.42 0.41 0.00 0.00 0.00
444: namd 0.16 0.03 0.05 0.00 0.00 0.00
471: omnetpp 0.96 0.06 0.08 0.00 0.00 0.00
400: perlbench 2.51 0.25 0.70 1.01 0.16 0.79
453: povray 3.57 0.75 0.69 0.01 0.00 0.00
458: sjeng 2.60 0.29 0.27 2.40 0.67 0.69
450: soplex 0.58 0.12 0.10 0.61 0.32 0.38
481: wrf 18.57 6.36 770 | 3445 29.72 54.86
483: xalancbmk 1.18 0.19 0.15 0.00 0.00 0.00
434: zeusmp 341 1.03 1.11 0.84 0.43 0.11
average 4.66 1.52 2.90 9.45 7.68 10.62

Figure 11: Coverage of GRAPHITE branch - May 2009 [in %]

Beside from this it is also good to see where are the low
hanging fruits to improve the impact of GRAPHITE.
As shown in 11 GRAPHITE achieves in average 4.66
% coverage of all loops®and about 2.90 of all GIMPLE
statements. As expected the hot spot analysis shows
that most of the loops are part of hotspots as 9.45 % of
all loop iterations are covered by graphite and 10.62 %
of all statement executions.

Very interesting is the high divergency between the
different results. There exist only four interesting
benchmarks looking at the hot spot coverage. These are
cactusADM with 99.41 %, calculix with 76.09 %, and
wrt with 54.86 % statement coverage and h264ref with
20.47 % loop coverage. All other benchmarks are under
5 % most of them even less.

Looking at the compile time coverage the diversity is
still big, but not that extreme. All benchmarks are in in

8loops, conds, stmts = simple coverage, whereas p-loops, p-
conds, p-stmts is hot spot coverage

10

between 0.10 and 36.38 % statement coverage.

What is interesting is that a high value in compile time
coverage does not imply high runtime coverage. Look-
ing at cactusAMD it seems 3.64 % of all statements
seem to be sufficient to get 99.41 % of the statement
iterations. Whereas the 36.38 % statement coverage
of Ibm covers just 0.02 % of the executed statement
iterations.

Taking a look at the first coverage report for GRAPHITE
it shows two things. On the one hand we already got
some very interesting test cases for which it is worth
to write optimizations for. On the otherhand we
learned that there are still a lot of benchmarks where
GRAPHITE does not have much impact. However for
a first shot the coverage seems promising enough to try
to analyse the reasons for the small coverage in some of
the benchmarks.

5.3 Ways to achieve better coverage

Until now focus in GRAPHITE development was to
complete the polytope model by gathering necessary in-
formation from GIMPLE. As GPOLY is already com-
plete enought to write optimizations on it, now it is time
to focus on coverage. Good optimizations do not give
any gains in performance, if they can not be applied.

5.3.1 What is possible in structured code ?

There are different ways to improve coverage of
GRAPHITE. To get an impression how much cover-
age can be achived SCoP detection is run without any
restrictions beside the structured control flow graph.
Therefore it detects single entry single exit regions,
without stopping on side effects, non affine loop bounds,
structures, conditions that can not be handled or any
other restrictions. They are only restricted to structured
code containing only single exit loops and conditions
with branches that can be joined easily. The analysis
gives an idea of how much structured code can easily be
accessed by GRAPHITE. As shown in 12 almost 50 %
of the statements and 64.31 % of the statement iterations
are in structured code.

However there is again a high diversity that shows e.g.
statement coverage in between 11.25 % and 90.50%.
Certainly it is theoretically impossible to handle all of
this, but GRAPHITE can move closer to these numbers.

5.3.2 Implemening missing features

The first step to extend coverage is to look inside
GRAPHITE. There are several interesting features that
are not yet implemented and can be added without
extending GPOLY.

The first feature would be to handle arbitrary boolean
expressions of affine functions in loop boundaries
and conditions. At the moment we just support code
like “SCoP 1" in 13, whereas it is possible to add all
conditions shown in “SCoP 2" in the polytope model.
Fortunately most of the work to simplify the conditions
will be done by PPL. For normal conditions the only
part left to be done is to the conditions into PPL and to
see how fast PPL can simply them. For loop bounderies
it may be necessary to extend the analysis that detects
the number of iterations for a loop.

void foo (int N,
int 1, r;
int A[100];

int M) {

// Start SCoP 1
for (i=0; i<=N+10; i++) {
if (5 x 1 >1 + N)
r = A [i-N] + r;
}
// End SCoP 1

// Start SCoP 2
for (i=0; i<=N+10 ||
if (5x1>1+N
&& (i!=12 && N < M))
r = A [1i-N] + r;

1<=M; i++) {

}
// End SCoP 2

Figure 13: Boolean expressions in bounds and condi-
tions

It is also possible to support “may-write" for array
accesses. Currently a memory access is rejected if the
access function is not affine. However even it is not
possible to represent the access function exactly, we can
mark the complete region that they may be accessed as
“may-write" or “may-read".

Another way to extend coverage is to allow unstructured
code. At the moment conditions are not allowed to be
nested in complicated ways, loops with multiple exits
can not be handled. A SCoP detection working on
unstructured code should be able to handle this. Even
if we can not represent unstructured parts of a SCoP in
the polytope model, it might be possible to hide these
parts inside a black box and treat them like an atomic
operation. While working on more complex control
flow graphs it would also possible to support switch
statements.

5.3.3 Improve gcc analysis passes

GRAPHITE relies heavily on several gcc analysis
passes. The most important ones are loop detection,
scalar evolution and alias analysis.

Static Hotspot
Benchmark loops conds stmts | loops conds stmts
459: GemsFDTD | 96.55 60.80 68.24 | 100.00 99.98 100.00
473: astar 7273 5295 62.04 | 88.55 54.14 6252
410: bwaves 97.70 82.88 81.07 | 100.00 100.00 100.00
401: bzip2 53.37 3775 4326 | 54.82 27.05 30.74
436: cactusADM | 72.81 48.08 62.92 | 99.33 98.48 99.96
454: calculix 7731 5297 59.11 | 9734 9289 97.67
403: gcc 4329 15.63 19.66 | 63.17 39.57 46.28
445: gobmk 43.09 2376 26.07 | 53.78 31.87 36.52
435: gromacs 8391 61.00 7357 | 5796 3638 83.44
464: h264ref 87.01 5259 56.61 | 9454 8230 89.50
456: hmmer 66.40 42.89 53.68 | 9697 98.81 98.89
470: 1bm 65.38 5441 90.50 | 9993 9991 100.00
437: leslie3d 96.64 56.09 7440 | 9993 99.79 99.98
429: mcf 27.69 1899 19.44 | 1476 1253 10.69
444: namd 53.88 24.16 41.04 | 20.23 1234 5491
471: omnetpp 38770 547 11.25 3.78 1.96 2.03
400: perlbench 40.26 13.17 16.49 457 11.81 18.33
453: povray 6442 3639 39.78 | 17.56 11.86 17.33
458: sjeng 61.69 2191 2360 | 5875 3639 3544
450: soplex 61.57 37.53 4437 | 8691 78.86 78.96
481: wrf 92.05 6745 6342 | 99.00 97.53 9843
483: xalancbmk 48.88 17.39 2480 | 3723 14.64 17.67
434: zeusmp 79.21 60.82 68.74 | 99.52 99.00 99.77
average 66.28 41.09 48.87 | 67.33 58.18 64.31

Figure 12: Coverage on structured code without restrictions [in %]

As we have already seen in 12 loop detection does a de-
cent job.

However looking into the scalar evolution analysis there
might still be room for improvement. Running SCoP
detection without stopping for scalar evolutions that re-
turned ‘“‘scev-unknown”, shows that the executed state-
ments increase from 10.62% to 22.63 % as well as
the other metrics. Therefore improving scalar evolu-
tion could have significant impact on GRAPHITESs code
coverage. Another interesting pass is the alias and data
reference analysis. This pass is not only interesting to
achieve hight SCoP coverage, but also limits how much
optimization is possible as less aliasing removes depen-
dencies.

Beside these main passes all kind of interprocedural
analysis are beneficial to GRAPHITE. Better constant
propagation for example improves coverage as func-
tions that contain a product of a parameter and another
dimension become affine as soon as the parameter is
know.

12

5.3.4 Extend the polyhedral model

It is also possible to extend the polyhedral model that
is currently defined in GRAPHITE. One possibility is
to allow conditions that can contain arbitrary expres-
sions in their condition as long as the expressions do
not touch any global state. Therefore the conditions are
only allowed to read the values of loop induction vari-
ables or parameters. However allowing these conditions
would require to keep track of them beside the polytope
representation. Another possiblility might be to extend
the polytope model to handle parametric strides or ar-
ray access functions containing non-linear parameters
as described in [3]. However at the moment complex-
ity seems to be prohibitive high. Therefore it seems to
be necessary to wait for some optimizations that lower
complexitiy at least for some special cases.

But even without extensions there is still enought space
for improvement in GRAPHITE. So there is time for
research and library development to work on tools and

algorithms for future GRAPHITE extensions.

6 Conclusion

After more than 30 years of research on polytope model
based optimizations, with gcc 4.4 the first mainstream
compiler was released that was able to apply polytope
optimizations on low level imperative code. And this
not only on small hand selected examples, but on all
programs that can be parsed by the gcc. However the
implementation is still very limited.

During the last six months the remaining limitations
were removed in GRAPHITE branch and by adding
polytope data references the polytope model was
completed. So the fundaments are set to integrate
polytope optimizations into gcc. Nevertheless there
was a small part missing. It was not known how much
impact GRAPHITE has. Does it actually make sense to
write optimizations for GRAPHITE?

This paper shows that there are already 4 benchmarks
in the set of 22 analysed SPEC benchmarks where
GRAPHITE can extract enough SCoPs to have an
noticeable impact without even optimizing it for high
coverage. Therefore it seems possible to apply polytope
optimizations in an automatic way on ‘“real world”
programs. The basis to start porting optimizations to
GRAPHITE.

Furthermore several possibilities to extend code cover-
age in GRAPHITE were shown. On the one hand by
extending GRAPHITE itself and on the other hand by
improving the gcc analysis passes that are essential for
GRAPHITE.

Taking this into account it seems realistic to expect
future optimizations based on the polytope model in
GRAPHITE to have notable impact. Therefore it is
time to start working on both, improving GRAPHITESs
coverage and writing optimizations that can take
advantage of the model GRAPHITE exports.

References

[1] R. Bagnara, P. M. Hill, and E. Zaffanella. The
Parma Polyhedra Library: Toward a complete set
of numerical abstractions for the analysis and
verification of hardware and software systems.
Science of Computer Programming, 72(1-2):3-21,
2008.

13

[2] Cédric Bastoul. Code generation in the polyhedral
model is easier than you think. In PACT 13 IEEE
International Conference on Parallel Architecture
and Compilation Techniques, pages 7-16,
Juan-les-Pins, France, September 2004.

[3] Philipp Classen. Code generation in the polytope

model with non-linear parameters, 2007.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment

form and the control dependence graph, 1991.

[5] Martin Griebl and Christian Lengauer. The loop
parallelizer LooPo. In Michael Gerndt, editor,
Proc. Sixth Workshop on Compilers for Parallel
Computers, volume 21 of Konferenzen des
Forschungszentrums Jiilich, pages 311-320.

Forschungszentrum Jiilich, 1996.

[6] Martin Griebl, Christian Lengauer, and Sabine
Wetzel. Code generation in the polytope model. In
In IEEE PACT, pages 106-111. IEEE Computer

Society Press, 1998.

[7] Jan Sjoedin, Sebastian Pop, Harsha Jagasia, Tobias
Grosser, and Antoniu Pop. The design of graphite.

20009.

	Motivation
	Status of GRAPHITE development
	The polytope model
	SSA on arrays - The polytope model?
	Arrays as sets of scalar values

	Using a schedule to specify the defining statement
	Extending array SSA for loops
	Why generate a new model and not extend GIMPLE?
	How to optimize polytope array SSA

	Code GRAPHITE can represent

	The polytope description in GRAPHITE
	The polytope library in GRAPHITE
	SCoP
	Black Box
	Data references

	Coverage of GRAPHITE
	How was the code coverage analyzed?
	Compile time coverage
	Hot spot coverage

	Coverage of GRAPHITE branch - May 2009
	Ways to achieve better coverage
	What is possible in structured code ?
	Implemening missing features
	Improve gcc analysis passes
	Extend the polyhedral model

	Conclusion

