
A decoupled approach to high-level loop optimization :
tile shapes, polyhedral building blocks and low-level

compilers
Tobias Grosser

To cite this version:

Tobias Grosser. A decoupled approach to high-level loop optimization : tile shapes, polyhedral
building blocks and low-level compilers. Programming Languages [cs.PL]. Universit�e Pierre et
Marie Curie - Paris VI, 2014. English.< NNT : 2014PA066270> . < tel-01144563>

HAL Id: tel-01144563

https://tel.archives-ouvertes.fr/tel-01144563

Submitted on 22 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
enti�c research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL , est
destin�ee au d�epôt et �a la di�usion de documents
scienti�ques de niveau recherche, publi�es ou non,
�emanant des �etablissements d'enseignement et de
recherche fran�cais ou �etrangers, des laboratoires
publics ou priv�es.

1
I N T R O D U C T I O N

The steadily growing complexity of problems solved in scienti�c and
high performance computing has caused a continuous hunger for
compute power. The same growth can be seen with mobile devices,
which have been turned into personal super computers driven by
the increasing demands of gaming and image processing. Looking
back twenty years, the most powerful supercomputer as published
on the TOP500 supercomputer list [52] of July 1994had a theoretical
peak performance of 236 GFLOPS (double precision) with a power
consumption of almost 500.000 Watts. Today, NVIDIA claims a peak
performance of 365GFLOPS (single precision) with 5 Watt power con-
sumption for their recently announced mobile platform Tegra K 1 [45].
Even though those numbers are not directly comparable, they show
clearly that large compute capabilities have reached mobile. And,
with 54,902 TFLOPS peak performance at the top of today's Top500
list [52], supercomputers did not stand still either.

A major factor for this enormous progress in compute power and
energy ef�ciency is, besides others, the increasingly specializedand het-
erogeneoushardware. Both mobile devices and super computer nodes
rely today on multi or many cores, short vector instructions, various
levels of caches and often dedicated accelerators. For programs to
bene�t, they need to be optimized to effectively exploit the available
hardware.

In the world of supercomputers it was common to optimize impor-
tant programs manually. Today manual optimization is, even on su-
percomputers, increasingly complemented with automatic program
generation and search space exploration. In the mobile market the
sheer number of different hardware platforms makes manual opti-
mization impractical. This becomes evident just by looking at the
mobile GPU market alone, where there are over ten entirely differ-
ent hardware designs a program needs to be tuned for. IP suppliers
such as ARM, DMP, Imagination Technologies, or Vivante and ver-
tically integrated suppliers such as AMD, Intel, Nvidia, and Qual-
comm, all provide their own designs, in addition to which vendors
such as Samsung and Broadcom use their own internal designs [111].
On Android, the most widely used mobile platform, direct acceler-
ator access is not even possible. Instead the RenderScript compute
interface was designed with automatic performance optimization as
a design goal.

“While testing and tuning a variety of devices is never bad, no
amount of work allows them to tune for unreleased hardware

3

40 split t i l ing

carried by the outer dimension k � t + i , meaning that the remaining
dimensions si are fully parallel.

More generally, we could use a general purpose optimizer such as
Pluto [35] to construct such an initial schedule (i.e., one with a sin-
gle outer sequential dimension followed by only parallel dimension).
This would allow us to consider more general inputs, but is left for
future work.

4.3 the split t i l ing schedule

We present our new algorithm in steps, starting with the main idea
applied to a single statement stencil, then generalizing it to multi-
statement kernels, and re�ning the method with necessary optimiza-
tions.

4.3.1 Core algorithm

Given an initial schedule as described in Section 4.2, we partition the
iteration space of the schedule domain by placing equally distanced
hyperplanes orthogonal to the axis of the time dimension. The differ-
ent partitions form bands of �xed height (the height of the tiles). As
the time dimension increases from band to band and as all depen-
dences are carried by the time dimension, the bands can and must
be executed sequentially. To obtain parallelism, we split the iterations
within a single band into tiles of different colors, such that depen-
dences may enforce an execution order between the different colors,
but that within a single color all tiles can be executed in parallel.

To partition the band into different colors, we derive a tile shape for
each color such that the full band can be covered with these shapes.
The tile shape of the �rst color C0 is constructed by choosing an ar-
bitrary point X. X will be the apex of a pyramid that contains all
iterations within the band that are needed to satisfy the (transitive)
dependences of X. To construct this pyramid, we calculate the de-
pendence distance vectors of the program and attach all of them to
X. Together they form the upper part of a pyramid. We now extend
the dependence vectors backward until their length along the time
dimension matches the tile height we are aiming for. The convex hull
of the extended dependence vectors forms a pyramid. This pyramid
is the minimal set of points that we consider as the shape of the �rst
color. In some cases it is preferable to have a shape that is wider
along certain space dimensions. We can form such wider shapes by
“stretching” the initial pyramid along these space dimensions. Stretch-
ing along a dimension means to position two copies of the original
shape, such that the positions of the copies only differ in the dimen-
sion along which we stretch them. The stretched shape is now the
convex hull of the two shapes.

	Dedication

