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Abstract—Static Single Assignment (SSA) is the workhorse
of modern optimizing compilers for imperative programming
languages. However, functional languages have been slow to adopt
SSA and prefer to use intermediate representations based on
minimal lambda calculi due to SSA’s inability to express higher-
order constructs. We exploit a new SSA construct — regions —
in order to express functional optimizations via classical SSA-
based reasoning. Region optimization currently relies on ad-hoc
analyses and transformations on imperative programs. These
ad-hoc transformations are sufficient for imperative languages
as regions are used in a limited fashion. In contrast, we use
regions pervasively to model sub-expressions in our functional
IR. This motivates us to systematize region optimizations. We
extend classical SSA reasoning to regions for functional-style
analyses and transformations. We implement a new SSA+regions
based backend for LEAN4, a theorem prover that implements
a purely functional, dependently typed programming language.
Our backend is feature-complete and handles all constructs of
LEAN4’s functional intermediate representation λrc within the
SSA framework. We evaluate our proposed region optimizations
by optimizing λrc within an SSA+regions based framework
implemented in MLIR and demonstrating performance parity
with the current LEAN4 backend. We believe our work will
pave the way for a unified optimization framework capable
of representing, analyzing, and optimizing both functional and
imperative languages.

Index Terms—Optimizing compilers, Functional programming

I. INTRODUCTION

Many optimizing compilers for imperative programming

languages use Static Single Assignment (SSA) as their inter-

mediate representation (IR) [1][2]. Such IRs impose structural

and semantic rules on values to aid the compiler’s reasoning.

Traditionally, such IRs express control flow using a Control

Flow Graph (CFG) – a flat collection of sequences of instruc-

tions (basic blocks) that transfer control amongst one another.

On the other hand, functional intermediate representations use

an expression-based IR, where control flow is represented

via particular expressions such as case statements. An IR for

functional constructs necessarily needs the ability to manipulate

sub-expressions.

The famous slogan “SSA is continuations” [3] is not

entirely true as stated; the correspondence between SSA and

continuation-passing-style (CPS) is established between SSA

and a syntactically restricted fragment of CPS, which is

further annotated with information about which continuations

out =

let x = e in y...

out = y

out = case True of

True -> e

False -> f

out = e

out = case x of

True -> e

False -> e

out = e

%x = rgn.val { e }

%y = ...

return %y

return %y

%ve = rgn.val { e }

%vf = rvn.val { f }

%r = select true, %ve, %vf

rgn.run %r

rgn.run %ve

%ve = rgn.val { e }

%vf = rgn.val { e }

%r = select %x, %ve, %vf

rgn.run %r

%ve = rgn.val { e }

rgn.run %ve

A Dead Expression Elimination

B Case Elimination

C Common Branch Elimination

Fig. 1: We express regions as SSA values to adapt transformations in functional
compilers in an SSA setting. We see that eliminating dead let bindings,
eliminating case of known values, and fusing case branches are all variants
of classical SSA transformations operating on region values declared by
rgn.val and executed by rgn.run.

represent intra-procedural control flow and which represent

inter-procedural control flow. Thus, the above translation is not

practically useful in order to design an SSA-based intermediate

representation for functional programming languages, and most

functional IRs continue to use expression-based intermediate

representations. This has resulted in a schism within the

compiler community, where the infrastructure built around

optimizing compilers for imperative languages does not get

reused for functional languages and vice versa.

In this work, we set out to heal this schism by providing

convenient, easily analyzable and optimizable encodings of
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core functional IR constructs within SSA. Our key innovation

is to use regions to represent functional sub-expressions as

SSA values. This allows us to extend SSA’s core strength, the

ability to reason about values via sophisticated algorithms, to

also cover reasoning about sub-expressions. This enables us to

mostly reuse SSA algorithms, and in some cases extend SSA

algorithms, to recover key functional language optimizations

within SSA. We also gain the ability to use the tooling provided

by MLIR’s compiler infrastructure for (a) testing, (b) having a

stable textual and in-memory representation, (c) sophisticated

infrastructure for parallel peephole rewriting, and (d) support

for parallelization and vectorization.

We contribute this novel encoding of a functional interme-

diate representation, and an implementation of the encoding

within the MLIR compiler framework. We also design and

implement new algorithms and modifications to existing

algorithms to reason about regions as sub-expressions. We

test our design by building a fully-functional backend for

the LEAN4 [4], functional programming language. Our new

backend uses the MLIR compiler framework to implement

SSA+regions. We embed LEAN4’s intermediate representation,

λrc, within MLIR and show how to perform common

functional programming language optimizations on λrc via

SSA-based reasoning. Concretely, our contributions are:

• A minimal intermediate representation lp which allows

functional constructs to be lowered, analyzed, and opti-

mized within an SSA setting.

• A novel use of regions to encode functional constructs

within an imperative SSA-style IR, called rgn.

• The design of functional-style optimizations for rgn,

which are analogues of classical SSA optimizations,

applied to regions (Figure 1).

• An evaluation of our feature-complete backend for the

LEAN4 compiler and its λrc intermediate representation

which demonstrates the soundness of our approach towards

representing functional programs in SSA via lp and rgn.

II. BACKGROUND

We provide background on SSA-based IRs, LEAN4, and

functional programming constructs.

A. Static Single Assignment (SSA) and Regions

An intermediate representation (IR) is in SSA form [5] if

each variable is assigned exactly once and no variable remains

undefined. SSA has gained popularity in imperative compilers

such as GCC [6], LLVM [1], and many others, as data-flow

information is explicitly expressed through dependencies from

the definition of a value to its uses (def-use chains). SSA-based

IRs typically use basic blocks that hold lists of sequentially

executed operations, each taking a list of argument values and

returning a tuple of return values. Terminator operations at the

end of each basic block, which either branch to another basic

block or return from a function, combine these basic blocks into

a control flow graph (CFG). While IRs typically use a flat CFG,

MLIR [7] recently introduced nested control flow as a first-

class concept to support abstractions that require control over

scoping. Operations can now receive regions, nested single-

entry sub-CFGs, as additional arguments. Regions make it

easy to express concepts such as loop bodies, branches of an

if-statement, and case statements in functional programs.

B. LEAN, λpure, and λrc

LEAN1 [8] is an open source theorem prover based on a

minimal dependently typed [9] kernel. After type checking the

LEAN program, the compiler compiles the program to λpure,

a minimal, pure, strict, higher order intermediate representation

that is suitable for further lowering into assembly. λpure

is lowered to λrc, an extension of λpure with reference

counting. The current LEAN backend then lowers λrc to C.

Runtime features such as primitives for I/O, numerics, reference

counting, and task-based parallelism are provided by a custom

runtime library, libleanrt.

C. MLIR

MLIR [7] is a new compiler infrastructure that aims to

simplify the development of domain-specific compilers. For

this, MLIR provides a minimal SSA-based intermediate repre-

sentation (IR), with the ability to easily instantiate extensions to

the core IR (known as dialects) which follow SSA conventions.

Having a customizable IR allows compiler developers to

model domain-specific concerns by introducing custom types,

operations, and attributes. Here, we briefly describe the relevant

aspects of MLIR that are used in our compiler.

1) Modules: Each program in MLIR is called a Module. A

Module consists of several global functions. Function names

such as @foo are global and allow for linking function calls

across modules. A function consists of basic-blocks. Each basic-

block is a sequence of operations, ending with a terminator

operation. SSA values are local to the scope of the function

and have names of the form %bar.

2) Operations: SSA values are produced by Operations,

such as addi, which stands for the integer addition operation.

Each operation takes zero or more SSA operands that are

defined before it and returns zero or more SSA values.

Operations can also have compile time constants attached to

them, such as {phase = 90.0 : f64}. These are called

attributes.

3) Dialects: A Dialect in MLIR is a collection of operations

and types. The type system in MLIR consists of either

primitive types or user defined custom types to encode more

complex type systems. In this paper, we use two existing

dialects, std and scf. The std dialect contains all basic

operations such as constant declarations, arithmetic operations

and memory manipulation. The Structured Control Flow Dialect

scf contains if-else and for loop constructs.

III. EXPRESSING FUNCTIONAL PROGRAMS VIA SSA

In this section, we survey λrc, LEAN’s intermediate

representation and discuss our embedding of λrc into MLIR’s

SSA-based compiler IR.

1We refer to LEAN 4 when using the versionless expression LEAN.
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lp.construct : (!lp.t)* -> !lp.t
lp.construct %<arg-1>, ..., %<arg-n> { tag = <tag> }

lp.int: i64 -> !lp.t
lp.int %<v>

lp.getlabel : !lp.t -> i8
lp.getlabel %<val>

lp.joinpoint : ()
lp.joinpoint @<label> {
    // after-jump
  }, {
    // pre-jump
  }

lp.jump : (!lp.t)* -> () 
lp.jump @<label> %<arg-1>, ... %<arg-n>

lp.pap: (!lp.t)* -> !lp.t
lp.pap @<fn-name> %<arg-1>, ... %<arg-n> 

lp.papextend: !lp.t x (!lp.t)* -> !lp.t
lp.papextend %<closure>, %<arg-1>, ... %<arg-n> 

lp.bigint: !lp.t
lp.bigint <constant-bigint>

lp.project: !lp.t -> !lp.t

lp.project %<data>, <constant-index>

lp.switch: i8 -> ()
lp.switch %<tag> 
  <alt-0> -> {
    // rhs-0
  },
  <alt-1> -> {
    // rhs-1
  },
  ...
  @default -> {
    // rhs-default
  }

lp.inc: !lp.t -> ()
lp.inc %<v>

lp.dec: !lp.t -> ()
lp.dec %<v>

lp.return: !lp.t -> ()
lp.return %<v>

lp.switch: i8 -> ()
lp.switch %<tag> 
  <alt-0> -> {
    // rhs-0
  },
  <alt-1> -> {
    // rhs-1
  },
  ...
  @default -> {
    // rhs-default
  }

lp.joinpoint : (!lp.t)* ->  !lp.t
lp.joinpoint @<label> (%<args>) {
    // after-jump
  }, {
    // pre-jump
  }

Fig. 2: lp’s operations, their syntax and their types. Variable length argument lists are denoted by (arg-ty)*. lp expresses data constructors, pattern
matching, closures, and join-points within an SSA framework. The control flow of lp.joinpoint and lp.switch are shown on the right. Control flow
proceeds as per the arrows.

LEAN4 λpure λrc LLVM
C

C runtime

exe

lp rgn

Fig. 3: LEAN4 compilation pipeline with our alternative lp backend, supported
by rgn to encode functional constructs. We reuse the LEAN frontend, as well
as the LEAN runtime to ensure compatibility with the runtime and FFI.

LEAN4’s λpure IR is a minimal functional language with

support for expressing data constructors, pattern matching,

function applications, and closure creation. A lower level IR,

known as λrc, extends λpure with operational concerns such

as reference counting within the same IR. The current LEAN4

compiler compiles λrc down to C, followed by invoking a C

compiler to link with the runtime and generate binaries. Our

MLIR backend generates an MLIR dialect (lp) from λrc,

and then continues compilation using the MLIR compilation

pipeline (Figure 3).

We introduce the lp dialect (which stands for λpure,

though we also support λrc reference counting instructions)

within MLIR, with the following set of high-level operations

(Figure 2):

• lp.int, lp.bigint to create machine integers and

GMP-based big-integers.

• lp.switch to pattern-match on integers.

• lp.construct to create algebraic data types.

• lp.getlabel to extract the tag of an algebraic data

type.

• lp.project to extract out fields from an algebraic data

type.

• lp.pap, lp.papextend, to express partial function

applications (closure creation).

• lp.joinpoint, lp.jump, for representing structured

control flow using join points.

• lp.inc, lp.dec for reference counting.

• lp.return to return values from lp control flow.

We note that the dialect is feature complete to represent

a functional programming language. It supports all the core

constructs necessary, including closures and partial applications,

data constructors and pattern matching on data constructors,

as well as support for reference counting. This completeness

is a strength of lp, since we are able to compile a realistic

functional programming language (LEAN4) with our compiler

pipeline. Like λrc, the lp dialect uses a single type, denoted

by !lp.t, to represent values that live on the heap, i.e., boxed

values. We also use standard integer types such as i32 and

i8 as necessary to express interactions with machine integers.

lp is type erased, as we have erased most typing information

from the LEAN source program. We are left with just enough

of the type information to generate code that is aware of types

such as int, float, pointers, as well as integer bit widths.

A. Integers & Switch Cases

LEAN supports arbitrarily sized natural numbers and integers

with the Nat and Int types. LEAN also guarantees that small

integers are represented by a machine word. To support this,

lp introduces the lp.bigint operation to construct arbitrary

sized integers and the lp.int operation to construct machine

word sized integers. The LEAN4 compiler lowers lp.bigint
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def intUsage : Nat -> Nat

| 42 => 43

| _ => 99999999

func @intUsage(%arg: !lp.t) -> !lp.t {

  %c42 = lp.int 42 : !lp.t

  %eq42 = call @lean_nat_dec_eq(%arg, %c42) : i8

  lp.switch %eq42 

   1 -> {

    %out = lp.int 43 : !lp.t

    lp.return %out : !lp.t

  },

  @default -> {

    %out = lp.bigint "99999999" : !lp.t

    lp.return %out : !lp.t

  }

}

Fig. 4: Program demonstrating integer manipulation with lp.int,
lp.bigint, and lp.switch. We use lp.switch to pattern match on raw
integer values. LEAN integers are type-erased to create a uniform representation
for small and large integers. Integers are compared using the runtime call
@lean_nat_dec_eq.

to runtime calls to create big-integers, while lp.ints are

lowered to machine integers.

Note that the runtime does not distinguish between naturals

and integers — they lower to the same signed machine level

representation, and are only distinguished at the LEAN level

by the dependently typed theory.

As LEAN integers can be both machine integers and big-

integers, pattern matching on a LEAN integer must anticipate

the scrutinee as being either a machine integer or a big-integer.

λrc hides this complexity by staging the pattern match: (1)

First, we check whether one LEAN integer is equal to another

using a runtime call to @lean_nat_dec_eq. This function

handles equality checking between machine-machine, machine-

bigint, and bigint-bigint integers uniformly. (2) If the integers

are equal, we execute the pattern match.

In more detail, the @lean_nat_dec_eq function receives

two integers of type !lp.t as input, and returns either a 0

or a 1 of type i8 to indicate whether the inputs are equal.

We switch-case on the return value with the lp.switch

operation which dispatches control to a matching switch arm. If

no switch arm matches, control is dispatched to the @default

arm (Figure 2).

For concreteness, consider the example program in Figure 4.

To compile the first arm of the pattern match 42 =>, we call

lean_nat_eq_dec to check if the argument %arg equals

42. If this is true, we proceed to execute the right hand side of

the pattern match and return 43. The other arm _ => of the

switch becomes the @default branch of the lp.switch

which returns 99999999.

B. Join Points

The naive lowering of case statements to switch operations

can result in code duplication across the right hand sides of

nested cases. We wish to avoid such duplication to ensure

B Code Duplication

A Pseudocode example
def eval: Int -> Int -> Int -> Int
| 0, 2, _ -> 40
| 0, _, 2 -> 50
| _, _, _ -> 60

1

2

3

def eval(%x: i32, %y: i32, %z: i32) -> i32 {
  lp.switch %x 
  0 -> { 
    lp.switch %y 
    2 -> {
       lp.return 40
    },
    @default -> { // 0 2 _ -> 40 
       lp.switch %z
       2 -> { // 0 _ 2 -> 50
         lp.return 50
       },
       @default -> { // 0 _ _ -> 60
         lp.return 60
       } // end switch %z
    } // end switch %y
  },
  @default -> { // _ _ _ -> 60
    lp.return 60
  } // end switch %x
}

1

2

3

3

C Deduplication via join-points

def eval(%x: i32, %y: i32, %z: i32) -> i32 {
  lp.joinpoint @jp {
    return 60
  }, {
    lp.switch %x
    0 -> {
      lp.switch %y 
      2 -> {
        lp.return 40
      },
      @default -> {
         lp.switch %z
         2 -> {
           lp.return 50
         },
         @default -> {
           lp.jump @jp
         } // end switch %z
      } // end switch %y
    },
    @default -> { 
      lp.jump @jp
    }// end switch %x
  } // end join point
}

4

Fig. 5: Complex pattern matching introduces code duplication across branches
of control flow. This pattern matching is lowered using lp.jump to optimize
the right hand side. The pattern matcher uses lp.jump to jump to the
deduplicated right hand side. The arrows on the left indicate code duplication;
the arrows on the right indicate deduplication via lp.jump.

efficient compilation of pattern matching. Consider a case

statement that matches on two arguments (Figure 5). For the

first two cases 1 and 2 , we expect that the first argument is

0, and the second or the third argument is 2. If this is not the

case, we execute the default case 3 .

As lp.switch can only match on a single integer at a

time, we introduce two nested lp.switch statements when

lowering this pattern match. The outer switch analyzes the
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first argument and the inner one analyzes the second argument.

If either case 1 or case 2 fails, we must execute the code

for the default case 3 . When directly lowering to nested

switch operations, the expression that computes the result of

the default case is duplicated into multiple branches of the

switch operations (duplication indicated by arrows in Figure 5

A). In case of complex pattern matches with many variables,

this duplication can be very costly.

To remedy such code duplication, as well as to increase

the expressiveness of the IR to encode complex control flow,

LEAN uses join-points [10], [11]. These join-points introduce

the ability to create labels within the IR that control flow can

jump to. Intuitively, a label is a point in the program, and

jumping to a label joins control flow across the program at that

point. The code duplication that we observed in Figure 5 A is

eliminated via join-points (Figure 5 B). We create a common

region 4 that performs the default action of returning 60.

Code duplication is avoided by introducing two lp.jumps

as indicated by the arrows. Conceptually, the combination of

lp.joinpoint and lp.jump allows us to represent local,

named closures within the IR, since the join-point region can

refer to values that were defined before the join-point, as well

as the arguments that are passed by lp.jump. The difference

between the join-point closures and regular closures is that

join-point closures are known to not escape, and all of their call

sites are within the function body. This allows join-points to

be efficiently lowered to jumps, unlike regular closures which

require us to build heap objects that represent the closure.

Together, lp.joinpoint and lp.jump provide a powerful

tool to decrease code duplication incurred by complex pattern

matching.

C. Data Constructors & Pattern Matching

In this section, we describe lp’s support for constructing

data types via data constructors, and destructuring data types

via pattern matching. A data constructor is conceptually a

tagged union. Thus, we construct data using lp.construct,

which receives a tag and a sequence of arguments. The tag

denotes which variant of a given data type is being built, and

the argument list denotes the fields of the data constructor.

For example, if we wish to build linked lists (Figure 6), we

would need two tags, one for the empty list (Nil / tag 0) and

one for a cons-cell (Cons / tag 1). The function @singleton

constructs a list with a single cons-cell by constructing a nil

value and linking a cons-cell to the nil value.

To compute the length of the linked list, we pattern match

on the tag of the data constructor. If the tag is 0 (the object

is Nil), we return zero. Otherwise, the tag must be 1 (the

object is Cons) and so we recursively call length on the rest

of the list and add one. We extract the tag via lp.getlabel,

pattern match on the tag using lp.switch, and extract the

list pointer from the cons-cell using lp.project.

D. Closures

LEAN supports two types of function application: (1) regular

(saturated) function applications where the caller provides as

inductive List

| Nil | Cons (i: int) (l: List)

def singleton (n : Nat) : List := Cons n Nil

def length : List -> Nat

| Nil => 0 | Cons n l => 1 + length l

func @singleton (%n: !lp.t) -> !lp.t {

  %nil = lp.construct { tag = 0 }

  %cons = lp.construct %n, %nil { tag = 1 }

  lp.return %cons

}

func @length(%arg0: !lp.t) -> !lp.t {

  %lbl = lp.getlabel %arg0

  lp.switch %lbl

  0 -> {  // Nil

   %c0 = lp.int 0 : !lp.t

   lp.return %c0 : !lp.t

  },

  1 -> { // Cons

   %l = lp.project %arg0, 1

   %len = call @length(%l)

   %c1 = lp.int 1 : !lp.t   

   %out = call @lean_nat_add(%c1, %len)

   lp.return %out : !lp.t

  } 

}

Fig. 6: We encode a data constructor with lp.construct, which receives
the tag and the values held by the constructor as arguments. We encode a
case expression as a combination of lp.getlabel, lp.project, and
lp.switch. lp.getlabel extracts the label of the data constructor that
is switched on by lp.switch. The fields of the value that is being case’d
upon are extracted using lp.project.

many arguments as the arity of the function, (2) partial function

applications, where the caller provides fewer parameters than

the function’s arity. In the case of a regular function application,

we call the function eagerly, and reuse MLIR’s function call

infrastructure to lower these. For partial function applications,

we build a closure that holds onto the arguments that are

supplied, and waits for further arguments to be provided

before the call can be made. Once a closure receives all its

arguments, the function held by the closure is invoked with all

the arguments that are held by the closure.

Partial applications require some care. First, to build a clo-

sure, we introduce the lp.pap (partial application) operation,

which partially applies a function to some arguments and

builds a closure. To extend a closure with more arguments,

we introduce the lp.papextend (partial application extend)

operation, which takes as inputs a closure and further arguments

to extend the closure. If these extra arguments saturate the

closure (i.e., the closure now has all arguments), then the

function stored in the closure is invoked with arguments stored

in the closure. If the closure is not yet saturated the closure is

extended by storing the newly passed arguments in the closure.
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def k (x: Nat) (y: Nat): Nat := x 

def k10: Nat -> Nat := k 10

def ap42 (f: Nat -> Nat -> Nat): Nat -> Nat := f 42

def k42: Nat -> Nat := ap42 k

func @k (%x: !lp.t, %y: !lp.t) -> !lp.t {

  return %y: !lp.t

}

func @k10(%x: !lp.t) -> !lp.t {

  %c10 = lp.int 10 : !lp.t

  %out = lp.pap @k, %c10

  return %out : !lp.t

}

func @ap42(%f: !lp.t) -> !lp.t {

  %c42 = lp.int 42 : !lp.t

  %out = lp.papextend %f, %c42

  return %out : !lp.t

}

func @k42(%x: !lp.t) -> !lp.t {

  %k = load @kslot : !lp.t

  %out = call @ap42(%k): !lp.t

  return %out : !lp.t

}

global @kslot : !lp.t

def @init() {

 %k = lp.pap @k

store @kslot, %k // initialize @kslot

}

def @entrypoint(%argc: i64, %argv: i8*) {

   ...

}

def @main(%argc: i64, %argv: i8*) { 

call @init() // setup top-level closures

  call @entrypoint(%argc, %argv) // run program

}

Fig. 7: Closures are built using lp.pap, and closures are extended using lp.papextend. We see that these are ubiquitous operations which almost always
occur in the presence of higher order functions. A program written in the functional style will typically have many closures, so a compact and optimizable
representation is important. λrc performs lambda lifting which creates top-level closures such as @kslot which must be initialized before the program is run.
We first run init() which initializes closures, followed by entrypoint which is the entry point to the LEAN program.

Consider the example in Figure 7. The function @k10

partially applies k to the value 10. This is done by calling

lp.pap with arguments @k and 10. This creates a closure

which waits for the other argument y to invoke k(10, y).

The function @ap42 takes an arbitrary closure and applies

it to the value 42. This is achieved by using lp.papextend

to extend the closure of f with the argument 42.

Finally, we draw attention to subtletly when invoking ap42

with the argument k. ap42, which obeys LEAN’s calling

convention, expects a closure as an argument. But what is the

closure associated to k? We don’t have one, as k is a top-level,

raw function, not a LEAN closure. This mismatch requires us

to be able to create empty closures for top-level functions. This

is performed by the runtime, where we have an initialization

phase which creates top-level closures. In this case, the closure

associated to k is initialized in the global variable @kslot

by the function @init.

As for lowering, lp.pap and lp.papextend are lowered

into runtime calls which manipulate closures. A closure is

represented in-memory by a function pointer and a list of

pointers to the arguments which are held by the closure.

E. Tail Calls

λrc explicitly keeps track of calls which must be tail calls for

memory consumption guarantees. To respect this, we generate

an LLVM call annotated with a musttail attribute, which

enforces that these calls must be tail calls. If a call that is

annotated as a musttail cannot be guaranteed to be a tail

call, then the LLVM optimizer provides an error. This is critical

as tail-call-optimization is guaranteed by the LEAN language

semantics, but is not guaranteed by the lowering to C as the

C standard does not require guaranteed tail call elimination.

F. Reference Counting

Since LEAN is a functional language, one does not explicitly

refer to memory allocation or de-allocation. Hence, LEAN

implements automatic memory management via reference

counting. To incorporate reference counting for objects that are

created on the heap, we expose the operations lp.inc and

lp.dec to increment and decrement reference counts. These

are lowered to corresponding LEAN runtime calls.

G. Linking against the Lean Runtime

We link against the LEAN runtime which is written in C, by

compiling to LLVM, and then linking using llvm-link. We

perform this step as many performance critical runtime routines,

including refcounting, are written in C, and are inlined by the

leanc backend. Thus, for performance parity, we compile the

C code down to LLVM and link the runtime, thereby providing

LLVM visibility to LEAN’s runtime symbols.

IV. THE RGN DIALECT

In this section, we introduce the rgn dialect to represent and

optimize control flow within λrc. We describe the semantics

of the rgn dialect, the lowering from lp’s control-flow con-

structs (lp.switch, lp.joinpoint, lp.jump) to rgn

constructs, and the adaptation of classical SSA optimizations

to rgn. The rgn dialect has two instructions:

• The rgn.val instruction creates an SSA value which

names a region definition. These named values declare

regions prior to being called. This is conceptually a

continuation, where the region represents a computation

that is to be performed when invoked.

• The rgn.run terminator instruction transfers control

flow to a region with the supplied arguments. This is

conceptually invoking a continuation. We branch to the
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region that is to be executed and continue execution from

this region.

We allow rgn.val values to be passed as operands to

MLIR’s select and switch instructions. These instructions

allow us to pick a value based on a boolean or an integer

respectively. We use this to express choosing which region is

to be executed for control flow. We do not allow rgn.val

operations to interact with other operations; in particular, they

may not be passed to other functions as arguments and may

not be returned. This ensures that all uses of rgn.val can be

statically analyzed by our compiler, while still allowing us to

leverage the analyses and optimizations provided for select

and switch.

A. Lowering lp to rgn

lp.switch %<tag>
<alt-0> -> {
  // rhs-0
},
<alt-1> -> {
  // rhs-1
},
...
@default -> {
  // rhs-default
}

%r0 = rgn.val {
  // rhs-0
}
%r1 = rgn.val {
  // rhs-1
}
...
%rd = rgn.val {
  // rhs-default
}
%r = switch %tag
      <alt-0> -> %r0,
      <alt-1> -> %r1,
      ...
      default -> %rd
rgn.run %r

lp.joinpoint @<lbl> {
  // after-jump
}, {
  // pre-jump
  ...
  lp.jump @<lbl> (%arg)*
}

%lbl = rgn.val {
  // after-jump
}

// pre-jump
...
rgn.run %lbl (%arg)*

lp.switch %<tag>
<alt-0> -> {
  // rhs-0
},
<alt-1> -> {
  // rhs-1
}

%r0 = rgn.val {
  // rhs-0
}
%r1 = rgn.val {
  // rhs-1
}
%r = select %<tag>,
       %r0, %r1
rgn.run %r

A 2-Way Switch 

B N-Way Switch 

C Join Points

Fig. 8: Lowering the control flow of lp to rgn. lp.switch with two cases
is lowered via select (A). lp.switch with many cases is lowered via
switch (B). lp.joinpoint is lowered to a combination of rgn.val
and rgn.run (C).

The lowering from lp to rgn is straightforward (Fig-

ure 8). lp has two control flow constructs, lp.switch

& lp.joinpoint. lp.switch is lowered by converting

every right hand side of a pattern match to a rgn.val, then

selecting the correct right hand side that needs to be executed,

and finally executing the selected right hand side via rgn.run.

We lower the selection to either a select or a switch

depending on the number of cases. We lower lp.joinpoint

by converting the jump target to a rgn.val, the lp.jump

to a rgn.run, replacing the joinpoint by the region that is

to be executed before the jump.

B. Optimization Passes for rgn

In this section, we adapt classical optimization passes to

rgn ’s region-values. We explore optimizations that are made

possible by these adapted transformations.

1) Dead Region Elimination: Dead code elimination requires

no changes to work with region values. If a region value is

never referenced, then it is never executed. It is thus dead and

can safely be removed.

out =
 case True of
  True ->  3
  False -> 5

A 

%x = rgn.val { return 3 }
%y = rgn.val { return 5 }
%z = select true, %x, %y
rgn.run %z

B

%t = constant true
%x = rgn.val { return 3 }
%y = rgn.val { return 5 }
rgn.run %x

C

return 3

D

Figure A above is the original program. We show the naive

translation to rgn in B. The optimizations for select on

a constant value true kick in and replace %z by %x in C.

Finally, the running of a known region is replaced by the

constant value that corresponds to the region in D.

2) Global Region Numbering: We introduce global value

numbering for regions.2 For straight line regions, the value

number of the region is defined as a rolling hash of the value

numbers of all instructions within the region. Two regions

are defined to have the same value number if and only if

the sequence of instructions in the two regions have the

same value numbers in identical order. The restriction that

a region has a single basic block is not as restrictive as it

first appears, since languages with high level control flow

can always be lowered to regions with a single basic block,

with control flow expressed via rgn and select. Global value

numbering of regions identifies redundant computations across

branches of control flow. This allows us to fold away equivalent

computations.

out =
 case b of
  True ->  7
  False -> 7

A 
%b = <external>
%x = rgn.val { return 7 }
%y = rgn.val { return 7 }
%z = select %b, %x, %y
rgn.run %z

B

%b = <external>
%w = rgn.val { return 7 }
%z = select %b, %w, %w
rgn.run %z

C
%b = <external>
%w = rgn.val { return 7 }
rgn.run %w

D

Figure A above is the original program. We show the naive

translation to rgn in B, where the value %b is external to

the current scope being analyzed. The Region-CSE algorithm

2MLIR does not perform global value numbering as it is unclear how to
define value numbers for instructions with regions, as in general arbitrary
regions do not yet have a prescribed semantics.
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fuses %x and %y into one region, relabelled %w in C. Finally,

the select of two equal values (%w, %w) on both branches is

folded away in D.

C. Lowering rgn to std

In this section, we describe how to lower rgn to a traditional

SSA-based IR without regions. For concreteness, we describe

a lowering to MLIR’s std dialect. We anticipate no changes

necessary to lower to another purely SSA based IR such as

LLVM.

Since the semantics of rgn is given entirely by adding extra

structure to flat CFGs, rgn can be lowered by forgetting this

extra structure. The lowering is driven entirely by rgn.run.

First, we lower rgn.runs by matching on the argument — (1)

A rgn.run of a known rgn.val is compiled to a branch of

the region that is run, (2) A rgn.run of a switch (or select) is

compiled to a jump-table. Finally, dead rgn.val instructions

are entirely dropped.

V. EVALUATION

We evaluate our work by analyzing the correctness, perfor-

mance, and memory usage of the proposed SSA-based LEAN

backend. Our evaluation was run on an Intel Xeon CPU @

2.20GHz with 126GB memory. We first discuss the correctness

of our compiler. We then consider the end-to-end performance,

by comparing runtimes of programs compiled by our compiler

versus the baseline Lean compiler on LEAN’s benchmark suite,

and then perform an evaluation of the rgn optimizations on

the benchmark suite. Finally, we have a holistic discussion

about the costs and benefits of our new backend in comparison

to the current C backend of LEAN4.

A. Correctness

We test our compiler for correctness against the LEAN test

suite, which consists of 648 test cases, out of which we pass

648 (100%) of tests. This shows that our compiler correctly

implements the semantics of λrc and interfaces properly with

the LEAN runtime system. This ensures that our evaluation is

representative of functional programming workloads.

B. Performance Analysis

We characterize the performance of our backend in com-

parison to LEAN’s default backend (commit hash be4cf60)

using LEAN’s benchmark suite. The programs in the LEAN

benchmark suite represent workloads commonly encountered

by functional programming languages:

• binarytrees and binarytrees-int implement a

purely functional binary tree lookup, insert, and delete

benchmark.

• const_fold implements constant folding on an expres-

sion based language.

• deriv benchmarks derivative computations on expression

trees.

• filter implements filtering values from a linked list

based on a predicate.

• qsort implements real in-place quicksort using LEAN’s

arrays.

• rbmap_checkpoint implements red-black tree inser-

tion and lookup.

• unionfind implements Tarjan’s union-find algorithm.

binarytrees-int
binarytrees

const_fold deriv filter qsort

rbmap_checkpoint
unionfind

geomean
0.0

0.5

1.0

Speedup over leanc

1.05 1.12 1.01 1.04 0.93 0.99

1.39 1.27
1.09

Fig. 9: Speedup of our runtimes in comparison to LEAN4’s existing C backend.
The geomean speedup over the baseline LEAN4 compiler across all benchmarks
is 1.09x. Thus, we achieve performance parity with the LEAN4 backend.

The reported timing results (Figure 9) are gathered as the

geometric mean of runtimes over ten runs. We report a geomean

speedup of 1.09x with the baseline LEAN compiler, which

validates our claim that we achieve performance parity with

the LEAN4 compiler.

binarytrees-int
binarytrees

const_fold deriv filter qsort

rbmap_checkpoint
unionfind

geomean
0.0

0.5

1.0
Speedup over λpure simplifier

1.05 1.0 0.98 1.05 0.95 0.97 1.0 0.98 1.0
rgn simplifier none

Fig. 10: Speedup of rgn dialect optimizations over λrc (red) and speedup of
no optimizations over λrc (gray). The numbers over the bar are the speedups of
rgn over λrc. The geomean speedup of rgn over λrc across all benchmarks
is 1.0x. Thus, our simplification pipeline achieves performance parity with
λrc.

Finally, we compare the effectiveness of the rgn dialect

to that of the λrc simplifier (Figure 10) by running three

versions of the pipeline: (a) a baseline of our MLIR pipeline

which receives optimized code from the λrc simplifier, which

we compare against (b) unoptimized λrc code which is then

optimized by rgn (we disable LEAN’s simpcase pass which

performs rgn style switch simplification), as well as (c)

unoptimized λrc code which is left unoptimized by rgn

before passing to LLVM. We find that the performance is almost

identical across the three variants. We conjecture that LLVM’s

sophisticated control flow analysis is capable of optimizing

away the unoptimized IR we pass it.

In summary, we show that our SSA-based optimization

pipeline matches the hand-written LEAN optimization pipeline,

while reasoning about functional constructs purely via SSA.

The rgn dialect allows us to cleanly express λrc’s semantics

with SSA, thereby making SSA+regions an attractive choice

to represent functional programming languages in traditional

imperative compiler tooling.
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C. Qualitative Analysis

In this section, we compare and contrast our backend to

LEAN’s backend from the perspective of a compiler engineer.

We first survey a list of salient differences between LEAN’s

λrc backend and our MLIR-based backend (Figure 11).

Feature λrc + C lp + rgn

Backend C MLIR

Vectorization No

affine,

linalg

Testing harness makefile

FileCheck,

llvm-lit

Constant folding Hand-written MLIR rewriter

CSE Hand-written MLIR builtin

DCE Hand-written MLIR builtin

Inliner Hand-written MLIR builtin

Test minimization None mlir-reduce

Debug information None Possible

IDE support None LSP

Tail call optimization Heuristic Guaranteed

Fig. 11: Ecosystem differences between our MLIR-based backend and the
current LEAN4 tooling. Note that MLIR provides us access to a rich ecosystem
of tooling for compiler development.

Notice the availability of rich tooling due to our use of the

MLIR compiler framework — we are able to reuse existing

optimization infrastructure for constant folding, common

subexpression elimination (extended by rgn), dead code

elimination, and inlining. Similarly, we use LLVM’s test harness

infrastructure for parallel test running and failure reporting.

The λrc pipeline generates C code from which crashes and

miscompiles are difficult to debug as there is no association

between the generated C program and the source LEAN

program. One can potentially teach the LEAN frontend to

preserve debug information to be passed to MLIR. The MLIR

compiler framework makes retaining debug information a

top priority that enables the compiler engineer to correlate

miscompiles to LEAN program source locations accurately.

Finally, as indicated before, LEAN requires guaranteed tail

call elimination which the current C based backend cannot.

Our MLIR-based compiler guarantees this by using LLVM’s

musttail annotations.

In summary, our compiler lays the foundation for LEAN to

access an extensive suite of analyses and optimizations. It also

provides the compiler engineer tooling for debugging and unit

testing. Lastly, it allows us to provide deterministic tail call

elimination, which is necessary for the semantics of λrc.

VI. RELATED WORK

In this section, we survey related work on functional

intermediate representations and uses of SSA in compilers

for functional languages.

The Glasgow Haskell Compiler (GHC) [12] is an optimizing

compiler for Haskell, a lazy language with a focus on having

an expressive type system and the ability to write optimized

programs. GHC uses an intermediate representation known

as Core, which is a strictly typed encoding of Fω [13]. Most

optimizations to do with exposing computation happen at this

layer. After this stage, the encoding is lowered to STG [14], a

lower-level intermediate representation in administrative normal

form [15]. Next, STG is lowered to C-[16], which is a target-

independent assembly language that supports garbage collection.

From this stage, GHC can either emit assembly or generate

LLVM. The impedance mismatch is synthesized during the

translation from STG to C-. C- is a traditional assembly IR

that is well-suited to borrow traditional optimizations from

imperative compilers. Unfortunately, it is precisely at this step

that GHC chooses to simultaneously lower the encodings of

laziness and algebraic data types, making the assembly hard

to optimize.

The Intel Haskell research compiler [17] is a whole-program

optimizing compiler for Haskell which focuses on vectorization

and other program transformations for performance. This

compiler starts from GHC Core, and then translates to a

lazy ANF (Administrative Normal Form) [15]. The compiler

performs demand analysis and abstract simplification on ANF.

The demand analysis is performed using traditional abstract

interpretation techniques. Next, this demand information is used

to interpret the program and perform abstract simplification.

It then compiles to an intermediate representation called MIL,

which is a loosely typed CFG based, SSA-like intermediate

representation. They represent laziness as heap values, and

manipulate the heap. Thus, their representation and analysis of

lazy values uses memory semantics instead of value semantics.

MIL also does not have a notion of nested regions. Therefore,

MIL extends the traditional control flow controls with finer-

grained information, called as cut and interproc. Finally,

MIL is vectorized, and then lowered to Intel’s low-level IR,

Pillar, which mirrors LLVM [1]. Finally, assembly is generated

from Pillar.

GRIN [18] is an alternative monadic intermediate represen-

tation for lazy and strict functional programming languages

which explicitly represents heap manipulation and case analysis.

Due to the monadic encoding, it has pointer semantics, not

value semantics. GRIN therefore chooses to run a sophisticated

whole-program points-to analysis to resolve these pointers

for optimization. GRIN is well-suited for the whole-program

paradigm, while we focus on optimizing using local, per-

module information without incurring the penalty of a costly

global analysis.

Thorin [19] is a higher-order, functional IR based on

continuation-passing style. Thorin chooses to not use explicit

nesting, and uses a dependency graph instead. This has the

advantage of providing greater flexibility during compilation.

In contrast, we use explicit nesting based on regions, which is

easier to analyze and adapt into an SSA based framework.

The MLTon compiler [20] is a whole program optimizing

compiler for Standard ML. MLTon uses a variant of SSA to

encode algebraic data types and case analysis. They perform

whole program compilation, and use aggressive whole program

analyses reminiscent of GRIN to analyze and eliminate
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overhead. Furthermore, their adaptations to SSA do not involve

regions. They choose to encode special terminator operations

that represent control flow by case analysis.

VII. CONCLUSION

In this work, we have described lp, which implements a new

backend for the LEAN4 compiler within MLIR. To optimize

a functional language within an SSA compiler framework, we

introduce rgn, an intermediate representation that is designed

for region analysis and optimization. We adapt classical

functional language transformations to the SSA setting by

using and extending SSA algorithms to operate on rgn. Finally,

we implement our suggestions and demonstrate that our new

LEAN4 backend based on lp and rgn passes all regression

tests and achieves performance parity with the existing LEAN4

compiler. This foundation is a force multiplier, as we can now

express the LEAN4 semantics in a compiler framework that

has been designed to be analyzed, optimized, and offers mature

support for performance and regression testing. We envision

lp and rgn together acting as the bedrock for SSA-based

optimizing compilers for many more functional programming

languages.

APPENDIX

A. Abstract

The artifact’s goal is to show how regions+SSA allows us

to create an MLIR-based backend for LEAN which achieves

performance parity with the LEAN4 compiler. The artifact

consists of a docker container with accompanying scripts to

replicate figure 9, 10. The docker container is the only piece

needed to run all the experiments. Scripts to generate the figures

and the table come with the docker container.

B. Artifact Check-List (Meta-Information)

• Program: A custom LEAN4 backend based on the MLIR
compiler toolchain, along with LEAN4’s test suite for testing,
and LEAN4’s benchmark suite for performance analysis.

• Compilation: A C++ compatible compiler to bootstrap
LLVM/MLIR as well as LEAN4.

• Run-time environment: Any operating system that supports
Docker.

• Hardware: Any x86 machine.
• Output: PDF files replicating Figure 9 and Figure 10, and a

successfull run of the entire LEAN4 test suite.
• How much disk space required (approximately)?: 10GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2 hours.
• How much time is needed to complete experiments (approx-

imately)?: 1 hour.
• Publicly available?: Yes.

C. Description

1) How Delivered: The artifact is delivered as a Docker container
and is available at http://doi.org/10.5281/zenodo.5786074.

2) Hardware Dependencies: None.

3) Software dependencies: The docker image has dependences
needed to compile MLIR, Lean4, and our compiler tooling to run the
test suite.

D. Experiment Workflow

Access the docker image cgo22.docker from (http://doi.org/10.
5281/zenodo.5786074), then run:

$ docker load -i cgo22.docker

$ docker run -it siddudruid/cgo21-v4

$ su nonroot # switch to non-root user

$ export PATH=/code/llvm-project/build/bin:$PATH

$ export PATH=/code/lean4/build/release/stage1/bin:$PATH

$ export PATH=/code/lz/build/bin:$PATH

$ export LEANLIB=/code/lean4/build/release/stage1/lib

$ export LD_LIBRARY_PATH=$LEANLIB:$LD_LIBRARY_PATH

$ cd /code/lean4/build/release && \

make -j4 test

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-time.py --data --plot --nruns 10

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-rgn-time.py --data --plot --nruns 10

Upon running make -j4 test, the test output is
printed to stdout. The scripts speedup-time.py and
speedup-rgn-time.py, produce PDFs speedup-time.pdf
and speedup-rgn-time.pdf in the directory
/code/lz/test/lambdapure/compile/bench/:
/code/lz/test/lambdapure/compile/bench/speedup-time.pdf

/code/lz/test/lambdapure/compile/bench/speedup-rgn-time.pdf

To open the pdf file, keep the container running, and in another
shell instance, use the docker cp command to copy files from
within the container out to the host:

$ docker container ls # find ID

$ docker cp <CONTAINERID>:<PATH/INSIDE/CONTAINER> \

<PATH/OUTSIDE/CONTAINER>

For more about docker cp, please see: (https://docs.docker.com/
engine/reference/commandline/cp/)

E. Evaluation and Expected Result

On running the test suite with:

$ cd /code/lean4/build/release && make -j test

We find that the output is:

100% tests passed, 0 tests failed out of 648

See that we pass all tests. The test script that is run can be found at
/code/lean4/test/common.sh which can be seen to invoke
our compiler pipeline.

To generate performance plots, we run:

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-time.py --data --plot --nruns 10

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-rgn-time.py --data --plot --nruns 10

For speedup-time.pdf, we expect a geomean
speedup of 1.0x with the baseline leanc, and for
speedup-rgn-time.pdf, we expect a geomean speedup
of 1.0x between region optimizations and no region optimizations.

F. Full Workflow Example

# Grab docker image from http://doi.org/10.5281/zenodo.5786074

$ curl https://zenodo.org/record/5786074/files/cgo22.docker?download=1 > cgo22.docker

$ docker load -i cgo22.docker

$ docker run -it siddudruid/cgo21-v4

$ su nonroot # switch to non-root user

$ export PATH=/code/llvm-project/build/bin:$PATH

$ export PATH=/code/lean4/build/release/stage1/bin:$PATH

$ export PATH=/code/lz/build/bin:$PATH

$ export LEANLIB=/code/lean4/build/release/stage1/lib

$ export LD_LIBRARY_PATH=$LEANLIB:$LD_LIBRARY_PATH

$ cd /code/lean4/build/release/ && make -j test # NO test failures

100% tests passed, 0 tests failed out of 648

Total Test time (real) = 399.28 sec

[100%] Built target test

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-time.py --data --plot --nruns 10

$ cd /code/lz/test/lambdapure/compile/bench && \

./speedup-rgn-time.py --data --plot --nruns 10
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